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It is known that when the steady state of a one-dimensional multispecies system, which evolves via a
random-sequential updating mechanism, is written in terms of a linear combination of Bernoulli shock mea-
sures with random-walk dynamics, it can be equivalently expressed as a matrix-product state. In this case the
quadratic algebra of the system always has a two-dimensional matrix representation. Our investigations show
that this equivalence exists at least for the systems with deterministic sublattice-parallel update. In this paper
we consider the totally asymmetric simple exclusion process on a finite lattice with open boundaries and

sublattice-parallel update as an example.
DOI: 10.1103/PhysRevE.79.051124
I. INTRODUCTION

Recently, the steady-state properties of exclusion pro-
cesses which belong to the class of driven-diffusive systems
have been under much investigation because of their unique
physical characteristics such as shocks and nonequilibrium
phase transitions [1-3]. The matrix-product approach has
turned out to be one of the most powerful techniques in
determining the steady states of such stochastic nonequilib-
rium systems which have been used to model biological
transport and traffic flow. The matrix-product approach has
been interpreted from different points of views (a recent re-
view of this approach can be found in [4]). According to this
approach the nonequilibrium steady-state weight of any
given configuration of a one-dimensional stochastic system
can be considered as a matrix element of product of noncom-
muting operators, one for each lattice site, chosen according
to the state of the lattice site. In order to calculate these
weights one needs to know a set of algebraic relations be-
tween these operators. Whether these operators have matrix
representations is a challenging issue.

We have recently investigated the relation between the
dimensionality of the matrix representation of the algebra of
a given one-dimensional driven-diffusive system with
nearest-neighbor interactions and the possibility that the
steady state of the system in question can be written in terms
of a linear superposition of product shock measures. In this
context a shock is defined as a sharp discontinuity in the
density profile of particles on the lattice. In [5] we have
shown that for the one-dimensional driven-diffusive systems
defined on a discrete lattice of finite size in which a single
product shock measure has a simple random-walk dynamics
under the time evolution generated by the stochastic Hamil-
tonian of the system, the steady state of the system can easily
be written as a linear combination of these single product
shock measures. In most cases it is necessary that some con-
straints on the microscopic reaction rates of the system are
satisfied. Surprisingly we have seen that at the same time the
steady state of the system can be written as a matrix-product
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state with two-dimensional matrix representation for the al-
gebra of the system, provided that the same constraints (if
they exist) on the microscopic reaction rates are satisfied.
The matrix representation in this case obeys an special struc-
ture which contains very detailed information about the hop-
ping rates of the shock front, as well as the density of par-
ticles on the left- and the right-hand sides of the shock front.
In the present work we aim to investigate the same issue;
however, this time it is for the systems in a different updating
scheme, i.e., the sublattice-parallel dynamics.

One of the simplest, yet interesting, driven-diffusive
model which has been studied widely during recent years is
the asymmetric simple exclusion process (ASEP). In this
model the classical particles enter the system from the left
boundary of a discrete lattice, diffuse in its bulk, and leave it
from the right boundary with certain rates. The derivation of
the matrix-product representation from the algebraic Bethe
ansatz for this model has been studied in [6]. For this model
the equivalence between the partition functions of the system
with random-sequential dynamics and the partition function
of a two-dimensional lattice path model of one-transit walks
or Dyck paths has been studied in [7]. Under the parallel
dynamics the partition function of the ASEP can be ex-
pressed as one of several equivalent two-dimensional lattice
path models involving weighted Dyck paths [8]. The dynam-
ics of a single shock front in the ASEP with a discrete time
updating scheme defined on an infinite lattice has already
been studied in [9].

In this paper we will answer the question whether the
existence of a two-dimensional representation for the qua-
dratic algebra of a driven-diffusive system with a discrete
time updating (more specifically sublattice-parallel updating)
and nearest-neighbor interactions is related to the fact that
the steady state of the system can be constructed in terms of
a linear superposition of product shock measures with simple
random-walk dynamics. We will consider the totally asym-
metric simple exclusion process known as TASEP with open
boundaries as a simple example. In this model the particles
only hop toward the right boundary after being injected into
the lattice from the left boundary. As we will see, quite simi-
lar to the case of random-sequential updating scheme studied
in [5], it seems that whenever the quadratic algebra of the
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system (since we only consider the systems with nearest-
neighbors interactions) has a two-dimensional matrix repre-
sentation with a specific structure (which will be discussed
later), then we can conclude that the steady state of the sys-
tem is made up of a linear combination of product shock
measures with a shock front which has simple random-walk
dynamics and vice versa. One of the differences here is that
in the case of sublattice updating scheme one should define
two different shocks which behave differently at even or odd
lattice site. This has already been observed in [9] for an
infinite system.

In the following sections we will first present the math-
ematical tools and definitions. Then we will study the time
evolution of two product shock measures defined at even and
odd sites under the sublattice-parallel update. Then we will
construct the steady state of the system in terms of a linear
combination of these shocks. We will bring the quadratic
algebra of the system and its two-dimensional representation
in terms of the shock characteristics. The conclusion will be
presented in the last section.

II. MATHEMATICAL PRELIMINARIES

Let us start with the definitions and mathematical prelimi-
naries. Consider a general two-state driven-diffusive system
with nearest-neighbor interactions and sublattice-parallel dy-
namics in which classical particles move on a one-
dimensional lattice of length 2L with open boundaries. The
bulk dynamics consists of two half time steps. In the first
half time step even lattice sites and also the first and the last
lattice sites are updated. From the first and the last lattice
sites, the particles can be injected or extracted with certain
probabilities. In the second half time step only the odd lattice
sites are updated. The corresponding transfer matrix 7 con-
sists of two factors T=T,T, defined as [10]

T'=LRT® -+ @TOR=LITVeR,
T,=T®T® -+ @ T=T°L,

where 7, £, and R are the matrices for bulk interactions,
particle input, and particle output, respectively. The time
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evolution of the probability distribution is governed by the
following equation:

TIP(1)=|P(t+1)). (1)

In long-time limit the system approaches its steady state and
its nonequilibrium probability distribution satisfies the fol-
lowing equation:

T|P*) = |P*). (2)

As a simple example consider the TASEP which in an
appropriate basis the above transfer matrix can be written as

[10]
7 £=<1—a 0>’ R=(1 B )
a 1 0 1-8

3)

As can be seen, the particles in the bulk of the lattice move
only to the right deterministically while obeying the exclu-
sion principle. The particles can enter (leave) the lattice only
from the left (right) boundary with the probability a(8). The
dynamics and also the steady state of the TASEP with open
boundaries has been proposed and studied in [11]. Later its
steady state was studied using a matrix formalism in [10]. In
the thermodynamic limit, i.e., L> 1 one finds that the system
has two different phases: a high-density phase for > 3 and
a low-density phase for a<<f. A first-order phase transition
also takes place at the transition line a=g.

oS O O =
oS O = O
o o = O
- O O O

III. TEMPORAL EVOLUTION OF SHOCKS

In what follows we study the time evolution of two prod-
uct shock measures using the time evolution equation (1).
We consider a discrete lattice of length 2L and introduce two
product shock measures at even sites 2k (k=1,...,L) as
| 42> and at odd sites 2k+1 (k=0, ...,L) as |uyy,1) according
to

1- podd 1- peven 1- podd 1- pgven 1- pgdd 1- pgven
1 1 1
|'u’2k> = ( pzl)dd ) ® ( piven ) ® ® ( p(lldd ) ® ( p;ven ) ® ® ( pgdd ) ® ( P;Uen )’ 4)
1 2k-1 2k 2L
dd dd dd
| o 1>—(l_p(f )@(l_piven)e@ '®<1—p7“">®<1-pg )@ ®(1—p‘2’ )@(1_p§ven) (5)
+1/ = dd 7 dd dd 1 :
P P o [ [ Py
1 2k 2k+1 2L

We should explain a couple of points here. First, one
should note that the shock front for |u,,) lies between the
lattice sites 2k—1 and 2k while the shock front for |uy,)
lies between the lattice sites 2k and 2k+ 1. Second, the shock

|422.41) indicates a flat distribution of particles with densities
p% and p**" at odd and even lattice sites, respectively. In
this case the shock front can be considered to be between the

lattice sites 2L and 2L+ 1 from which the latter is considered
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as an auxiliary site. Let us consider |u,) and |uors;) as two
initial probability distributions and investigate their time
evolutions using Eq. (1). Suppose that under some con-
straints on the reaction rates the dynamics of these two
shocks are given by

Tl o) = Sl par-1) + Sl parsr) + 8lpay  for 1=k =L,

T|pogs1) = 86| o) + 6,6, pagsn) + 5f|/~l'2k+3> + 512|M2k—1>
+(5s+2515r)|/'l“2k+1> for 1 SkSL—l,

T|lu’1> = 5r5s|lu’2> + 53|M3> + (1 - 5}’63 - 53)|/“’1>7

Tltar1) = 88 par) + 8 lpar 1) + (1= 88, )| parer),
(6)

in which §,=1-6,—§,.

The first two equations in Eq. (6) have already been ob-
tained in [9] for the ASEP on an infinite lattice; however,
since the definition of the transfer matrix in this paper is
based on [10], these two time evolution equations have ex-
changed places as compared to the corresponding equations
(44) and (48) in [9]. For the TASEP with open boundaries
these equations of motion are valid, provided that we have

prit=0. =1,
pei’ven = a, pguen =1,
5r = B’ 51 =a. (7)

Note that Egs. (6) give a closed set of time evolution equa-
tions for |u;)’s in which k=1, ...,2L+1. It is also interesting
to note that in contrast to the ASEP, here there is no con-
straint on the microscopic reaction rates (the boundary rates
a and B). Although the particles move deterministically to-
ward the right boundary, the shock fronts hop both to the left
and to the right. This is a direct result of the updating
scheme.

IV. STEADY STATE

The simplicity of the time evolution equations (6) allows
us to construct the steady state of the system |P*). As can be
seen, they are similar to the time evolution equations for a
simple random walker moving on a finite lattice with reflect-
ing boundaries; however, the random walker behaves differ-
ently when it lies at an even or an odd lattice site. By con-
sidering a linear superposition of the shocks as

2L+1

) 1
|P*) = Z > edme (8)

k=1

and requiring that Eq. (2) should be satisfied, one finds

F) 2k-1
Cop = 55(;) for k=1, ...,L, (9)
1
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S 2k
C2k+1=<gr) for k= 0, ,L (10)
1

The normalization factor or the partition function of the sys-
tem Z can be easily calculated as

2L+1 1 5>2L
Z= = S(1=6)-6(1-8) = .
g Ck 5[ _ 5r( l( r) r( I)( 5] )

(11)

Since the steady state of the system is unique, if one calcu-
lates the steady-state probability distribution of the system
using the matrix-product approach, one should find the same
distribution as Eq. (8).

V. MATRIX-PRODUCT APPROACH

Let us now investigate the steady-state probability distri-
bution function of our general two-state model with
sublattice-parallel dynamics and nearest-neighbor interac-
tions using the matrix-product approach. According to this
approach (and in this particular updating scheme) the steady-
state probability distribution function of the system can be
written as [10]

Py el )| e a2

in which the operators £ and D (E and D) stand for the
presence of a hole and a particle at odd (even) sites, respec-
tively. The normalization factor Z is usually called the parti-
tion function and can easily be written in a grand canonical
ensemble as

Z=((W| (E+D)4E + D)* |V). (13)

The operators (E,D) and (E,D) besides the vectors | V) and
((W| are acting in an auxiliary space. According to the stan-
dard matrix-product approach by requiring that Eq. (2) is
satisfied one finds that the above-mentioned operators and
vectors should satisfy a quadratic algebra given by [10]

(5)(5))-(5)=(2)
el ) (5).
op)-(5)

Surprisingly, one can see that the following two-dimensional
matrix representation which can be written in terms of the
shock hopping rates and the densities of the Bernoulli mea-
sures at the left- and the right-hand sides of the shock posi-
tion can generate exactly the same probability distribution

(8),
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[0 (et 0
b=\, gp =l %:(1—;)7‘“) ’
peven 0 1—p" 0
p=l %1 E=l 4 %(1—/37“") |
(W] = (wy.wy), |V>>:<Z;>’ (15)

provided that we have

(6, = D(p3"" = pi"")

U Wod = s

W2 5
—=1
5,

R 5_] odd _ _odd

vlwzdz(l )(p5 Pi ) (16)
S
— =1
o,

These relations are nothing but two constraints on the param-
eters vy, Uy, Wy, Wy, d, and gl; therefore, only four of these
parameters are free. Note that the densities in the shock mea-
sures and also the shock front hopping rates in Egs. (6)
should be fixed by the boundaries and the microscopic reac-
tion rates, therefore, are not free parameters.

Let us go back to our simple example. It is shown in [10]
that the TASEP has a quadratic algebra which can be written
as

[E,E]=[D,D]=0, ED=[E,D],

DE=0, (W] E(1-a)=(W|E,

(W] (@E+D)=(W| D, (1-B)D [W))=D |V)),

(E+BD) |V))=E |V)). (17)

In the same reference it has been shown that Eq. (17) has a
two-dimensional representation for a # 8 which can be sim-
ply shown that it is of form (15) with the parameters given in
Eq. (7).

The reason that we emphasize the matrix representation of
algebra (17) can be rewritten in the form of Eq. (15) (which
is slightly different from what was first proposed in [10]) is
as follows. As we have claimed in our previous papers,
whenever the steady state of a one-dimensional driven-
diffusive system defined on a finite or infinite open lattice
which evolves under the random-sequential updating scheme
can be written in terms of a linear superposition of Bernoulli
shocks with simple random-walk dynamics, then the alge-
braic relation between the operators (when the steady state is
studied using the matrix-product formalism) will have a two-
dimensional representation with a generic structure. In [5]
we have also proposed a general formalism by which one can
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simply find a two-dimensional representation for the qua-
dratic algebra of the system in terms of the hopping rates of
the shock front and the densities of the particles on the left-
and the right-hand sides of the shock. This works if and only
if the time evolution of the position of a product shock mea-
sure with a single shock front is simply a random walk.
Moreover it has been shown, by providing several examples,
that the conditions under which the domain wall has a
random-walk dynamics are exactly those for the existence of
the two-dimensional matrix representation [5].

VI. CONCLUDING REMARKS

Let us review the results of the current work. The most
important goal in this work was answering the question of
whether the matrix representation of the quadratic algebra of
the system developing via sublattice-parallel updating
scheme has the same generic structure as we had proposed
for the case of continuous-time updating scheme. By com-
paring our results in this paper with those in [5] one finds
that the matrix representation retains its structure even in
sublattice-parallel updating scheme and it seems that, al-
though we have no direct proof for it at the moment, the
same is true for other updating schemes. In this direction we
have considered a general driven-diffusive system with
nearest-neighbor interactions which evolve via sublattice-
parallel updating scheme and is defined on an open lattice. If
we assume that a single product shock measure has a simple
random-walk dynamics, generated by the transfer matrix of
the system, then the steady state of this system can easily be
written in terms of a linear superpositions these shock mea-
sures. On the other hand we have introduced a two-
dimensional matrix representation which can generate ex-
actly the same steady state. The nontrivial point is that this
matrix representation has exactly the same structure that we
had found for the case of continuous time updating scheme.

As an evidence we have studied the TASEP under the
sublattice-parallel updating scheme and shown that an uncor-
related shock can evolve in the system without requiring any
constraints on the microscopic reaction rates, i.e., the injec-
tion and the extraction rates of the particles. The shock also
reflects from the boundaries of the lattice with some nonzero
rates. By investigating the time evolution equations of the
shock front, we have found that it has simple random-walk
dynamics. Since the dynamics of the shock front is quite
similar to that of a random walker [12], the steady state of
the system can be constructed as a linear superposition of
such product shock distributions. This could have been sup-
posed since our experience with random-sequential updating
scheme had shown that in this case the quadratic algebra of
the system should have a two-dimensional matrix represen-
tation as it was found in [10]. As we have seen in this paper
a two-dimensional matrix representation for the quadratic al-
gebra of the TASEP under discrete time updating exists with-
out any constraints.

Our investigations show that the ASEP with the most gen-
eral four-parameter open boundary conditions studied in [13]
can be explained using our approach provided that the same
conditions under which the quadratic algebra of the system
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has a two-dimensional matrix representation are fulfilled. We
have also found other families of driven-diffusive models
evolving under sublattice-parallel updating scheme in which
a product shock measure with a single shock front has a
simple random-walk dynamics very similar to Egs. (6), pro-
vided that some constraints on the microscopic reaction
probabilities are satisfied. We have shown that the steady
state of these systems can be written in terms of a combina-
tions of such single shocks, and at the same time the matrix
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representation of the quadratic algebras of these systems has
the same unique structure as in Eq. (15). The details of these
results will be presented elsewhere.
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